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This review summarizes the evidence for boron essentiality across the biological
spectrum with special focus on biochemical pathways and biomolecules relevant to
immune function. Boron is an essential trace element for at least some organisms in
each of the phylogenetic kingdoms Eubacteria, Stramenopila (brown algae and dia-
toms), Viridiplantae (green algae and familiar green plants), Fungi, and Animalia.
Discovery of several of the currently recognized boron-containing biomolecules was
achieved because the bound boron formed four coordinate covalent bonds with the
ligand, creating a thermodynamically stable complex that is almost undissociable in
water. Boron is a constitutive element in three antibiotics and a quorum-sensing signal
in bacteria. It enhances Fc receptor expression and interleukin-6 production in cultured
mammalian macrophages. Boron binds tightly to the diadenosine polyphosphates and
inhibits the in vitro activities of various serine protease and oxidoreductase enzymes.
Physiological amounts of dietary boron decrease skinfold thickness after antigen in-
jection in gilts and elevated circulating natural killer cells after adjuvant injection in
rats. It is predicted that several boron biomolecules waiting discovery are signaling
molecules that interact with the cell surface and are probably composed of two mirror
or near-mirror halves stabilized by a single boron atom to form a large circular bio-
molecule. J. Trace Elem. Exp. Med. 16:291�306, 2003. Published 2003 Wiley-Liss, Inc.�
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BORON CHEMISTRY

Chemical Characteristics

The biomolecules known to contain boron are either directly involved in im-
mune defense mechanisms or affect components of the immune system of a
particular organism. The unusual nature of boron chemistry is summarized here
to serve as a guide to the discovery of other boron biomolecules involved in
immune function. Although many synthetic boron compounds are made in the
laboratory, boron does not occur free nor bind directly to any element other than
oxygen in geological systems except for trivial exceptions [1]. Only those organic
compounds that contain B-O or B-N bonds (the organoboron compounds) are in
important in biological systems during normal physiological conditions. Exper-
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imental evidence to date suggests that these organoboron complexes are the result
of interaction with either OH or amine groups as described below. Organoboron
compounds or complexes are present in species across the biological spectrum.

Boric acid (proper chemical name: orthoboric acid), B(OH)3, is the most
probable form of boron after ingestion and subsequent hydrolysis [1], and
therefore available for interaction with biomolecules. Notably, boric acid is not a
proton donor, but rather accepts a hydroxyl ion (a Lewis acid) and leaves an
excess of protons to form the tetrahedral anion B(OH)4

) (Reaction 1) [2].

BðOHÞ3 þ 2H2O , H3O
þ þ BðOHÞ�4 pKa ¼ 9:25ð25oCÞ ð1Þ

Thus, at typical physiological boron concentrations (6.0 · 10)7 to �9.0 · 10)3

mol/L) in plants, animals, or humans, inorganic boron is essentially present only
as the monomeric species boric acid B(OH)3 and as borate B(OH)4

) [3]. With a
pKa in solution of 9.2, boron is predominantly in the uncharged, planar, trigonal
boric acid form (H3BO3) at physiological pH. However, when boron forms co-
valent bonds with biological ligands, its pKa is reduced to �6 [4], and the ma-
jority of the boron in ligand complexes are in the negatively charged borate
(H4BO4

)) form while occupying the binding site [2,3].

Boroesters

Boron oxo compounds can react with many biomolecules that contain one or
more hydroxy groups or similar suitable molecular structures to form boroesters,
one of the only two known classes of biologically relevant boron species. Several
types of boron esters exist. Boric acid reacts with suitable dihydroxy compounds
to form corresponding boric acid monoesters (‘‘partial’’ esterification, e.g.,
Structure 1) that retain the trigonal-planar configuration and no charge.

In turn, a boric acid monoester can form a complex with a ligand containing a
suitable hydroxyl to create a borate monoester (‘‘partial’’ esterification; mono-
cyclic, e.g., Structure 2) but with a tetrahedral configuration and a negative
charge. A compound of similar configuration and charge is also formed when
borate complexes with a suitable dihydroxy compound. The two types of
boromonoesters can react with another suitable dihydroxy compound to give a
corresponding spiro-cyclic borodiester (‘‘complete’’ esterification) that is a che-
late complex with a tetrahedral configuration and negative charge (Structure 3)
[5]. A partially esterified tridentate cleisto complex (Structure 4) may be formed
when a ligand contains three suitably cis-oriented hydroxyl groups [6].

Not all diol ligands can react with boric acid or borate because the resultant
boroestermust containO-B-Oangles thatdonotexceed the limitsof tolerable strain
on the bond. Typically, ligands that contain adjacent cis hydroxyl groups are most
likely to reactwithBoxocompounds to formaboroester, and the reactivityof boric
acid with the ligand generally increases in proportion to the number of these cisoid
groups [7]. The relevant cis-diol conformations for boron complexation are present
in severalbiologically important sugars, theirderivatives (sugaralcohols, -onic, and
-uronic acids), and some polymers. A boroester is sometimes formed without the
presenceofacisoid-diol groupbecauseof stereochemistry that limitsbondstrain [7].
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Also, hydroxyl groups arising from lactol formation (in glucose, alpha-D-form
only), hydrationofCOOHgroups (inalpha-hydroxy, e.g., lactic acid; andaromatic
o-hydroxy acids, e.g., salicylic acid), are reactive with B(OH)3 [7]. As discussed
below, the form of glucose in biological systems (nearly all in the pyranose, not
furanose, form and therefore unavailable for complexation with boron) was
probably an early driving force in the evolution of fungi, plants, and animals.

Discovery of functional biological boromonoesters (e.g., Structure 1) is espe-
cially challenging because the esterification reaction that produces this type of ester
is easily reversible [8,9]. However, the discovery of several of the currently recog-
nized boron-dependent biomolecules was achieved because the bound boron
formed four coordinate covalent bonds with the ligand, creating a thermody-
namically stable complex (Structure 3) that is almost undissociable inwater [10,11].

Structure 1.

Structure 2.

Structure 3.

Structure 4.
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At the molecular level, boron influences the activities of at least 26 enzymes
(most often in an inhibitory manner) examined in various animal, plant, cell-
culture, and refined chemical reaction systems. It appears to do this by acting on
the enzyme directly, by binding to cofactors (e.g., NAD) or substrates, as well as
other presently unclear mechanisms [12�14]. Oxidoreductase enzymes that re-
quire pyridine (e.g., NAD+ or NADP) or flavin (e.g., FAD) nucleotides (EC
1.1.1, 1.1.3, 1.2.1, 1.3.5, 1.6.2) are competitively inhibited by borate or its
derivatives as boron competes for the NAD or flavin co-factor. Reversible en-
zymatic inhibition as an essential role for an element is unusual. However, there
is irrefutable evidence that boron serves to inhibit or dampen several metabolic
pathways in higher plants.

Nitrogen�Boron Compounds

Organoboron compounds also include B-N compounds because B-N is iso-
electronic with C-C [2]. A variety of biological complexes important in the in-
flammatory process are formed when nitrogen acts as an electron-pair donor to

Structure 5.

Structure 6.
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fill the vacant boron pz orbital. For example, experimental evidence [15] suggests
that the mechanism for inhibition of a specific sub-subclass of enzymes (the
serine proteases) by boron involves formation of a covalent bond between boron
and a specific nitrogen at the active site of these enzymes. By way of further
example, the N�2 of histidine-57 of a-lytic protease and the boron atom of a
peptide boronic acid interact to form a covalent bond and give rise to a reversible
complex (Structure 5). Many serine proteases are involved in the inflammatory
process and their relation to boron is discussed below.

ESTABLISHED NONIMMUNOLOGICAL ROLES FOR BORON

Examination of a role for boron in immune function is aided by an appreci-
ation of the beneficial physiologic effects of boron across the biological
spectrum.

Structure 7.

Structure 8.
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Prokaryotes (Organisms Without Limiting Membrane Around
Nuclear Material)

Within the kingdom Eubacteria, boron is important for organisms distributed
over at least three separate phyla (Actinobacteria, Proteobacteria, and Cyano-
bacteria). The first boron biomolecule to be discovered is an antibiotic produced
by Streptomyces antibioticus, bacteria that are assigned to the phylum Actino-
bacteria. This and other boron-containing bacterial products from other species
within Actinobacteria and Proteobacteria are directly related to the immuno-
logical defense of the organism and therefore discussed more fully below.

In the phylum Cyanobacteria (blue�green algae), boron is required for several
dinitrogen-fixing bacteria with heterocysts (Nodularia sp., Chlorogloeopsis sp.,
Nostoc sp., and Nostoc sp. PCC 7119) but apparently not for the nonhetero-
cystous, dinitrogen-fixing forms or for the nondinitrogen fixing forms of Cy-
anobacteria [16]. Heterocysts are specialized cells on some filamentous
cyanobacteria and engage in nitrogen fixation. It was suggested that boron sta-
bilizes the glycolipid inner layer of the heterocysts by interacting with their
hydroxyl groups [16]. Boron essentiality for the heterocystous Cyanobacteria,
predominant organisms during the Middle Pre-Cambrian Period, indicates that
boron was an essential element during the early evolution of life [16].

Eukaryotes (Organisms With Limiting Membrane
Around Nuclear Material)

Kingdom Stramenopila. The kingdom Stramenopila is a newly recognized
split from the older diverse kingdom Protista that included all eukaryotic or-
ganisms that are not animals, true fungi, or green plants. Stramenopila is an
important group of organisms some of which have the largest linear dimensions
known (brown algae) or are ecologically very important (diatoms). Boron is
required by species of brown algae and diatoms. For example, embryos of Fucus

Structure 9.
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edentatus, a species of brown algae, die within four weeks in a boron-free me-
dium [17]. Cells of Cylindrotheca fusiformis, a marine pennate diatom, are unable
to divide in the complete absence of boron [18]. Likewise, 11 other marine
pennate diatoms, 4 marine centric diatoms, and 8 freshwater diatom species have
an established boron requirement [19].

Kingdom Fungi. Fungi share more genetic and protein homologies with
mammals than they do with green plants. This is of special interest in the field of
boron nutrition because of findings in 1999 [20] that boron stimulated growth in
the fungus Saccharomyces cerevisiae (Brewer’s yeast) during both the log growth
phase and stationary growth phase. This finding supplanted those published in
1968 [21] to the contrary. Boron deficiency also greatly reduces growth of the
fungal species Dothiorella sp. [22]. Because fungal species have a demonstrated
physiological response to supplemental boron and are a useful model for ex-
amining basic biomolecular mechanisms, their further study will aid in the search
for the precise biochemical role of boron in humans and other animals.

Kingdom Viridiplantae (Green plants). The two major lineages of green
plants are Chlorophyta (green algae) and Streptophytes (familiar green plants
found mostly on land plus some organisms traditionally considered green algae).
The use of sucrose instead of carbohydrates (which contain cis-diols that could
react with boric acid) as the major storage and transport sugar is thought to be
an important evolutionary change that ‘‘freed up’’ boron for other uses and
allowed evolution of the green algae. That is, the high affinity of boric acid for
adjacent and cis-hydroxyl groups present on biomolecules may have exerted
considerable evolutionary pressure to select for carbohydrate energy sources
with low percentages of the furanose forms [23]. However, there may have been
selection for two natural sugars, apiose and ribose, because their physiological
derivatives have a strongly-borate-complexing furanose configuration [23] and
they serve as components of important structural or enzyme-related biomole-
cules. As described more fully below, apiose moieties are found in the cells of
many higher plants. Even in a marine green alga (Ulva lactuca), boric acid (with
Ca2+) stiffens the structure of its sulfated rhamnose-containing polysaccharides
[24], a finding that led to the hypothesis that Ulva regulates the stiffness of its
polysaccharide gel by adding or removing sulphate groups [25].

Boron is recognized as essential for all species of vascular plants (Trache-
ophyta) but, surprisingly, the primary function is still unknown [13]. Recent
evidence suggests that the predominant place of boron function in plants is in the
primary cell walls where it cross-links the pectic polysaccharide rhamnogalac-
turonan-II (RG-II). The RG-IIs are small, structurally complex polysaccharides
that represent an extreme example of the evolutionary conservation of wall
polysaccharide structure [26]. They comprise one region in a long chain of
polysaccharides that forms pectin in primary plant cells. The RG-IIs have side
chain sugar residues that are characterized by rare sugars including apiose.
Apiose can cyclize only as a furanose such that, in aqueous solution, the pre-
dominate (54%) free form is b-D-erythrofuranose, a form that represents the
optimal configuration for complexation with borate [23]. Thus, an atom of bo-
ron crosslinks two RG-II monomers at the site of the apiose residues to form a
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borodiester (Structure 6) [27] and multiple crosslinks form a supramolecular
network. As described below, RG-II dimers influence a component of mam-
malian immune function.

In plants, a serious outcome of boron deficiency is the accumulation of starch
in chloroplasts and acceleration of the pentose phosphate cycle [28]. Although
the mechanism responsible for this phenomenon is not fully understood, it seems
clear that boron inhibits the activities of specific enzymes involved in starch
metabolism or within the pentose cycle. The pentose cycle is active in mamma-
lian systems, and is the basis for a proposed mechanism for the action of boron
in neutrophil respiratory burst as described below [29].

Kingdom Animalia. Boron is essential for embryological development in at
least two separate vertebrate phylogenetic classes. In the South African clawed
frog Xenopus laevis, boron deprivation disrupts embryonic development in a
number of ways including a high proportion of necrotic eggs and abnormal
development of the gut [30]. In mated zebrafish (Danio rerio), the early cleavage
stage of development is sensitive to boron deficiency and repletion of low-boron
embryos during the first hour after fertilization rescued them from death [31].

Boron has demonstrated beneficial effects in at least three other animal
models of human nutrition with many of the effects related to bone metabolism.
For example, boron supplementation of a low-boron diet reduced gross bone
abnormalities in the vitamin D-deficient chick [32,33]. In vitamin D-deficient rats
fed a low-boron diet, supplemental dietary boron enhanced the apparent ab-
sorption and retention of calcium and phosphorus and increased femur mag-
nesium concentrations [34]. In male pigs, bone lipid was lower and bending
moment higher when boron was supplemented to a boron-low diet [35].

ESTABLISHED IMMUNOLOGICAL ROLES FOR BORON

There is evidence from several laboratories that dietary boron has a role in
immune function in a variety of organisms as summarized below.

Boron and Bacterial Products

Boromycin and similar antibiotics. The first natural biomolecule found to
contain boron was boromycin, an antibiotic from a strain of Streptomyces an-
tibioticus (phylum Actinobacteria) first obtained from an African soil sample
[36]. Boromycin from Streptomyces sp. strain MA 4423 is active against Gram-
positive bacteria and certain fungi and protozoae but is inactive against Gram-
negative bacteria [37]. Its interaction with the cytoplasmic membrane that results
in the breakdown of the permeability barrier for potassium ions [38]. Boromycin
from Streptomyces sp. strain A-3376 was recently found to be a potent anti-
human immunonodeficiency virus (HIV) antibiotic [39]. It strongly inhibits the
replication of the clinically isolated HIV-1 strain and apparently blocks release of
infectious HIV particles from cells chronically infected with HIV-1 by unknown
mechanisms.

Tartrolon B (Structure 7) is another boron-containing antibiotic, closely re-
lated in structure to boromycin [40]. It is produced by the myxobacterium Sor-
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angium cellulosum strain So ce678 (phylum Proteobacteria) isolated from a soil
sample collected near Braunschweig, Germany. Tartrolon B acts against
Gram�positive bacteria and, notably, strongly inhibits growth of mammalian
cells (mouse fibroblasts) in culture [41]. A third similar boron-containing anti-
biotic, aplasmomycin, is excreted by a marine isolate belonging to Streptomyces
griseus (phylum Actinobacteria) [42]. It has inhibitory activity against Gram-
positive bacteria in vitro and plasmodium in vivo when administered orally to
mice infected with Plasmodium berghei [42].

The greater stability of borodiesters compared with boromonoesters probably
explains why the boron-containing antibiotics were isolated. These biomolecules
are ionophoric macrolides and have four inward directed oxygen atoms (two cis-
hydroxyl groups) that provide an ideal geometry for accommodation of the
boron atom and thus formation of a stable borodiester [43]. Even so, boron can
be removed from at least one of these antibiotics (aplasmomycin) by mild acid
hydrolysis by using citric acid buffer solution (pH 3). This causes slight con-
formational changes in the molecule and formation of a new compound (desb-
oroaplasmomycin) that does not have the ability of aplasmomycin to transport
K+ across a membrane [44]. Boron can be easily reinserted into desboroa-
plasmomycin by treatment with boric acid at pH 6 and 8 [45]. The overall shape
of the boromycin anion is roughly spherical with a lipophilic surface and a cleft
lined with oxygen atoms [46]. Assuming evolutionary conservation of early
biomolecules, the chemical structures of the boron-containing antibiotics most
likely serve as guideposts towards the future discovery of boron-containing
biomolecules in higher organisms.

Quorum sensing signal. Recently, there was the discovery of a boron-con-
taining biomolecule produced by a bacterium that is not an antibiotic [47] but
rather a cell-to-cell communication signal. Communication between bacteria is
accomplished through the exchange of extracellular signaling molecules called
autoinducers (AI). This process, termed ‘‘quorum sensing,’’ allows bacterial
populations to coordinate gene expression for community cooperative processes
such as antibiotic production and virulence factor expression. AI-2 is produced
by a large number of bacterial species and contains one boron atom per mole-
cule. Not surprisingly, it is derived from a ribose moiety, S-ribosylhomocysteine.
The gliding bioluminescent marine bacterium, Vibrio harveyi (phylum Proteo-
bacteria), produces and also binds AI-2. In V. harveyi, the primary receptor and
sensor for AI-2 is the protein LuxP that consists of two similar domains con-
nected by a three-stranded hinge. The AI-2 ligand binds in the deep cleft between
the two domains to form a furanosyl borate diester complex (Structure 8) [47].

Boron and Animal Cell Signaling

Macrophage Fc receptor. The Fc receptor internalizes antigen-antibodies
complexes and thus is necessary for efficient processing of antigens into peptides
presented by major histocompatibility complex class II molecules [48]. Expres-
sion of the Fc receptor on mouse macrophages in culture was enhanced in the
presence of a specific rhamnogalacturonan II (GL-4IIb2) that was isolated from
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the leaves of Panax ginseng C.A. Meyer [49]. The concentration of boron in this
rhamnogalacturonan II is relatively high (0.09%). The roots of this plant are the
source of a well-known Chinese crude drug used widely for the treatment of
gastrointestinal disorders and as an erythropoietic.

Interleukin-6 (IL-6). IL-6 is a systemic ‘‘proinflammatory’’ and, as such, an
important regulator of the immune system by inducing several processes in-
cluding differentiation of B-cells into high level antibody-producing cells,
thymocytes into cytotoxic T-cells, and stimulation of NK-cell activity, acute
phase reactant proteins, and prostaglandins [50]. Of the RG-IIs isolated from
Panax ginseng leaves, both GL-4IIb2 and GL-RIII were relatively potent en-
hancers of IL-6 production in macrophages harvested from mice [51]. Notably,
in the case of GL-RIII, dissociation of the RG-II dimer that contained borate
diester to the monomer significantly decreased its IL-6 production-enhancing
activity. Activity was recovered with re-dimerization of the dissociated GL-RIII.

Tumor necrosis factor alpha (TNF-a). TNF-a is a proinflammatory cytokine
with both local and systemic affects. It has the broadest spectrum of pleiotropic
activities of all of the cytokines, including inflammation, septic shock, lymphoid
organogenesis, and germinal center formation. Immunologically, TNF-a from
macrophages is probably the most critical [52]. Boron may affect TNF-a pro-
duction in chicks and humans. For example, TNF-a concentrations were ele-
vated in the culture medium of pelvic cartilage isolated from chick embryos after
they were incubated with boron as a 3% boric acid solution [53]. Likewise, TNF-
a concentrations were elevated in the culture medium of human fibroblasts after
incubation with 0.25% boric acid. There was also an increase in the amount of
total cellular mRNA present and the two TNF-a mRNA bands visible after
treatment with boric acid were undetectable before treatment [54]. Because the
treatments represented elevated, non-physiological amounts of boron, there is a
need to determine whether the effects of boron on TNF-a production are of
physiological importance.

Diadenosine phosphates (ApnA). ApnA molecules are present in all cells with
active protein synthesis and function as signal nucleotides associated with
platelet aggregation and neuronal response. The ApnA are putative ‘‘alarmones’’
which reportedly regulate cell proliferation, stress response, and DNA repair
[55]. Recent findings indicate that Ap6A, Ap5A, Ap4A, and Ap3A have higher
affinities for boron than any other currently recognized boron ligand present in
animal tissues including NAD+ [56]. At physiologic pH, the adenine moieties of
ApnA are driven together by hydrophobic forces and stack interfacially [57].
Stacking of the terminal adenine moieties brings their adjacent ribose moieties
into close proximity, a phenomenon that apparently potentiates cooperative
boron binding between the opposing riboses (Structure 9).

Boron and Serine Proteases

The known ability of boron to form covalent bonds with the nitrogen atom of
amine groups (as described above) and the observation that boron binds near the
coordination iron site of hemerythrin (the nonheme iron-containing, oxygen
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transport protein of the sipunculid worm, Golfingia gouldii) [58] suggest the
possibility of a large array of biochemicals other than polyols that can react with
boron to form complexes. The serine proteases are major proteolytic enzymes
(i.e., elastase, chymase, and cathepsin G) released by activated leukocytes that, in
addition to degrading structural proteins, have many essential regulatory roles in
normal inflammation, including control of the blood fibrinolytic system (e.g.,
thrombin) and the coagulation system (e.g., coagulation Factor Xa) [59]. The
boron atom is thought to inhibit the serine proteases by forming a tetrahedral B
adduct (the transition-state analog) that mimics the tetrahedral adduct formed
during normal substrate hydrolysis [60]. The adduct includes a covalent bond
between boron and a specific nitrogen at the active site of these enzymes
(Structure 5). Nanomolar concentrations of certain synthetic peptide boronic
acids, including MeO-Suc-Ala-Ala-Pro-acetamido-2-phenylethane boronic acid,
effectively inhibit chymotrypsin, cathepsin G, and both leukocyte and pancreatic
elastase in vitro [61]. Natural, simple unsubstituted boric acid compounds (e.g.,
sodium borate) also affect serine protease activity. For example, the serine
protease, thermitase (E.C. 3.4.21.66), is partially inactivated by hydrogen per-
oxide in the presence of 50 mM sodium borate [9].

Boron and the Respiratory Burst

NADPH. When neutrophils and other phagocytes are exposed to appro-
priate stimuli, they begin to produce large quantities of superoxide. During this
process, the phagocytes consume much more oxygen than that needed for the
generation of metabolic energy required for phagocytosis, a phenomenon termed
respiratory burst. The primary electron donor for the reduction of oxygen during
respiratory burst is NADPH [62] and the source of the NADPH for the respi-
ratory burst comes mainly from the reduction of NADP+ in the pentose-
phosphate pathway. As described above, this pathway is regulated by boron in
plants by inhibiting the activity of two critical enzymes in the pathway [13].

Reactive oxygen species (ROS). When neutrophils invade inflamed areas of
the body, they release, among other substances, ROS, including the hydroxyl
radical (OHÆ) and hydrogen peroxide (H2O2). If not properly controlled, ROS
cause severe damage to healthy tissue and lead to a myriad of inflammatory
diseases. Superoxide dismutase (SOD) is an oxidoreductase that serves to dis-
mutate superoxide anions. Boron may be important in the oxidant scavenging
process because boron supplementation increased erythrocyte SOD concentra-
tions in men and postmenopausal women [63]. SOD concentrations increase
during increased oxidative metabolism or in response to noxious stimuli. It re-
mains to be determined whether SOD concentrations increased because boron
may have induced free radical formation (unlikely) or whether boron improved
antioxidative capacity. Glutathione peroxidase reduces hydrogen peroxide by
means of reduced glutathione and the intracellular reduction of glutathione re-
quires NADPH and glutathione reductase [64].

c-glutamyl transpeptidase. Boron may exert its influence on the oxidant
scavenging process through direct action on c-glutamyl transpeptidase (GGT).
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That enzyme is the major catabolic enzyme for glutathione and its derivatives.
Serine-borate complex is a transition-state inhibitor of GGT [65]. By that
mechanism, serine-borate apparently elevated the concentrations of GSH in
cultured fibroblasts taken from individuals suffering from glutathione synthase
deficiency [66]. Thus, the available evidence is consistent with the hypothesis that
boron protects against oxidative damage by an unknown mechanism.

Boron and the Immune Response

There are several lines of evidence that dietary boron exerts influence on
immune function in humans and animal models as described below. The
mechanisms for these systemic effects have not yet been identified but could very
easily involve one or more of the biomolecules or processes described above (Fc
receptor expression, IL-6, TNF-a, and ApnA concentrations and inhibition of
the respiratory burst) that affect pain and fever, lymphocyte activation, and
natural killer cell concentrations.

Pain and fever. The Unani traditional medical system in India uses sodium
tetra-borate or borax as an ingredient of some prescriptions for treatment of
inflammatory diseases including joint pain [67]. In the only reported controlled
human study for examination of dietary boron and pain [68], twenty patients
presenting radiographically confirmed osteoarthritis received either daily 6 mg
(0.55 mmol) of boron as oral supplements or a placebo for 8 weeks in a double-
blind trial. The arthritic individuals who received boron supplements self-re-
ported substantial improvement in subjective measures of their arthritic condition
(joint swelling, restricted movement, fewer analgesics for pain relief). In a separate
study with rats, boron (10 mg/kg body weight; single dose) as common borax was
reported to have anti-arthritic and anti-pyretic activities because it reduced paw
volume and fever in albino rats with formaldehyde-induced arthritis in [67].

Lymphocyte activation. The addition of boron in vitro over a range between
0 and 20 lg (1.85 lmol)/mL inhibited proliferation of splenic cells isolated from
boron-deprived rats and subsequently stimulated by 0, 5, or 50 lg phytohem-
agglutinin/mL [69]. Also, physiologic amounts of boron [3 lg (0.28 lmol)/g]
added to a boron-low diet (0.2 lg [0.02 lmol]/g) more than doubled serum total
antibody concentrations to injected antigen (human typhoid vaccine) in rats [70].
Gilts fed a boron-low or boron-supplemented (5 mg B/kg diet as sodium borate)
diet throughout the nursery, growing, and finishing phases exhibited differences
in immune function [71]. For example, on experimental d 95, the skinfold
thickness response after an intradermal injection of phytohemagglutinin was
significantly lower in the gilts that received supplemental boron. Boron did not
affect the blastogenic response of isolated lymphocytes to mitogen stimulation or
the humoral immune response against a sheep red blood cell suspension. Healthy
peri-menopausal women excreted 1.1 and 3.0 mg boron/d during the placebo and
boron supplementation periods respectively and exhibited an increased per-
centage of polymorphonuclear leukocytes during the boron supplementation
period [72]. A recent preliminary report [69] suggested that ample (but probably
not pharmacologic) amounts of dietary boron (20 lg [1.85 lmol]/g) compared
with very low amounts (<0.2 lg (0.02 lmol]/g), significantly delayed the onset of
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adjuvant-induced arthritis in rats (incidence of arthritis at 12 days postinjection
with M. tuberculosis: <0.2 lg B/g, 41%; 20 lg B/g, 0%).

Natural killer (NK) cells. Circulating NK cells, compared with other
lymphocytes, divide rapidly and comprise about 15% of blood lymphocytes [73].
They are considered an important first line of defense against microbial infec-
tions because their effector functions of cytolysis and cytokine (TNF-a, IFN-c,
and GM-CSF) secretion are not antigen specific and are activated immediately
after contact with infected target cells [74]. Their response to adjuvant (M. bu-
tyricum)-induced arthritis was examined in rats deprived or supplemented with
dietary boron [75]. All rats grew at a normal rate and exhibited signs of in-
flammation after injection. Dietary boron had an immunomodulatory effect by
affecting the circulating concentrations of NK cells. For example, on day 13 after
injection, rats fed the boron supplemented diet exhibited higher circulating
concentrations of NK compared to those fed the boron low diet. It seems rea-
sonable to conclude that the effect of boron on arthritis in the study was not
pharmacological in nature because the total amount of boron in the boron-
supplemented diet was only 2 mg B/kg. For purposes of comparison, the con-
centration of boron in commercial rodent chow, with unknown boron bio-
availability, is typically �13.0 lg/g [76].

Predictions

Based on the structure of known boron-containing biomolecules, it is pre-
dicted that several similar biomolecules waiting discovery are signaling molecules
that interact with the cell surface and are probably comprised of two mirror or
near-mirror halves stabilized by a single boron atom to form a large circular (a
macrocyclic) biomolecule.

SUMMARY

Boron is an essential trace element for plants and is beneficial or established as
essential for four animal models of human nutrition. In humans, boron appears
to be beneficial and under homeostatic control. This review summarized boron
chemistry and biochemistry and known essential functions across the biological
spectrum as they relate to better understanding of the apparent role of dietary
boron in immune function.
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